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An Unconditionally Stable 3-D ADI-MRTD Method
Free of the CFL Stability Condition

Zhizhang Chen, Senior Member, IEEE,and Jiazong Zhang, Member, IEEE

Abstract—In this paper, an alternating direction implicit (ADI)
technique is applied to the recently developed multiresolution time-
domain (MRTD) method, resulting in an unconditionally stable
ADI-MRTD scheme free of the Courant–Friedich–Lecy (CFL) sta-
bility condition. The unconditional stability is theoretically proved,
and preliminary numerical results are presented to validate the
scheme. Because the scheme is now free of the stability condition,
its time step is determined only by modeling accuracy. The price
for having the unconditional stability is, however, that the required
computation memory becomes almost twice of that for the original
MRTD.

Index Terms—Alternating direct implicit (ADI) technique and
unconditionally stability, FDTD, MRTD.

I. INTRODUCTION

FDTD is a powerful numerical method for solving electro-
magnetic problems where field components are computed

in a time recursive fashion. An extensive review of the
state-of-the-art was presented in [1] and [2]. Nevertheless,
FDTD is very computationally intensive due to its two inherent
physical constraints, one being the numerical dispersion and
another being the numerical stability. To make the numerical
dispersion small, the spatial step of FDTD must be small,
normally smaller than one-tenth of wavelength. To make the
time-recursion stable, the time step must also be small, smaller
than the so-called Courant–Friedich–Lecy (CFL) stability
condition. As a result, a large numerical mesh and a long
simulation time may be required for solving electrically large
structures.

Many efforts have been made in relaxing or removing the
above two constraints in order to reduce the computational
expenditures. Among them are the multiresolution time-domain
(MRTD) method applying wavelets expansions in space [3]
and pseudospectral time-domain (PSTD) method applying
fast Fourier transform (FFT) in space [4]. Both methods have
claimed to achieve low numerical dispersion with numerical
grid resolutions as low as two points per wavelength. However,
the CFL stability condition for both methods still remains.

To relax or even remove the CFL conditions, implicit
methods may be incorporated in formulating the FDTD. One
of the implicit approaches is the alternating direction implicit
(ADI) method that has been applied in heat transfer problems
[5]. An ADI-FDTD was attempted in 1980 [6] but was not
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successful until recently [7]–[9]. The ADI was applied to a
two-dimensional (2-D) TE-wave in [7]. A three-dimensional
(3-D) full-wave, unconditionally stable ADI-FDTD was shown
in [8], with rigorous proof of unconditional stability, and in
[9], with excellent numerical examples (in particular for the
low-frequency computations). In this paper, further to our work
in [8], the ADI principle is applied to the MRTD, resulting in
an unconditionally stable 3-D ADI-MRTD algorithm.

II. UNCONDITIONALLY STABLE 3-D ADI-MRTD
FORMULATION

Similar to the development of the ADI-FDTD described in
[8], the ADI-MRTD is derived by applying the ADI algorithm to
the original MRTD formulations. Since various forms of MRTD
exist due to the selections of different wavelet functions, various
forms of ADI-MRTD can also be developed. In our case, the
S-MRTD [3] is considered for simplicity as an illustration of the
ADI-MRTD development. The field space is discretized with
the Yee’s grid, and the field quantities are expanded in terms of
the wavelet expansions [3]. For instance, one can have

(1)

(2)

where and are the coefficients resulted from the
wavelet expansions [3].

When the ADI scheme is applied, the above equations are
broken up into two sub-steps,th step and th step.
In the first sub-step, the time instants for all the first terms on
the right-hand sides are set to be same as the first terms on the
left hand sides . In the second sub-step, the time instants for all
the second terms on the right-hand sides are set to be same as
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the first-terms on the left-hand side. More specifically, (1) and
(2) now become

(3)

(4)

for the first substep, and

(5)

(6)

for the second substep.
By applying the same procedure to the MRTD equations for

the other components, the complete formulations for the uncon-
ditionally stable ADI-MRTD scheme can be obtained.

In comparisons of (4)–(6) for the ADI-MRTD with (1) and
(2) for the original MRTD, it is not difficult to see that memory
required with the ADI-MRTD is double that of the original
MRTD. This is because, in the ADI-MRTD, both electric
and magnetic field components are updated at each sub-step,
while in the original MRTD, either electric or magnetic field
components are updated at each sub-step as shown in (1) and
(2).

The ADI-MRTD formulations can be further simplified as
presented in [8] for the ADI-MRTD. For instance, after some
tedious derivations, one can have following equations for:
for the first substep

(7)

while for the second substep

(8)

The advantages of solving (7) and (8) instead of (3) and (5)
lies in the fact that, in (7) and (8), the quantities to be updated
are of the same quantity, s, on the left-hand side of the equa-
tions. They are neighboring to each other along onlyonedimen-
sion, the direction (representing the spatial direction in the
direction). By changing the subscript, (5) or (6) each leads
to a linear system of equations with a banded coefficient matrix
whose width is determined by the order of MRTD applied. Such
a banded matrix can be solved quickly for the MRTD time re-
cursions with special mathematic subroutines.

III. N UMERICAL STABILITY

The unconditional stability of the proposed ADI-MRTD can
be proven in a way similar to that shown in [8]. By taking the
discrete Fourier transform in the spatial domain along the three
directions respectively, the ADI-MRTD in the spatial spectral
domain at the th step can be written as

(9)

where is the six field com-
ponents in the spectral domain. is a matrix whose co-
efficients are functions of space steps, time steps, medium con-
stitutive parameters, and spatial frequencies in the, , and
directions respectively.

For the proposed ADI-MRTD to be unconditionally stable,
magnitudes of all the eigenvalues of matrixneed to be either
unity or smaller. After some tedious derivations with the help of
MAPLE5.1, they are found to be

(10)
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Fig. 1. Relative errors of the ADI-MRTD with the dense mesh (�t -
is the CFL time step limit of the original MRTD).

where

(11)

(12)

(13)

(14)

As shown in [8]

(15)

As a result, magnitudes of all the eigenvalues, as represented by
(10), are of unity. Therefore, the proposed ADI-MRTD scheme
is unconditionally stable.

IV. NUMERICAL RESULTS

In order to validate the proposed ADI-MRTD, a cavity with
dimensions of 90 mm 60 mm 150 mm was computed. In the
first case, the mesh chosen was rather dense. The spatial steps in
all the three dimensions were chosen to be mm, leading
to a 18 12 30 grid. The time step was varied from one to six
times of the CFL limit of the original S-MRTD [3]. Fig. 1 shows
the relative errors from the analytical solutions for the three res-
onant modes, TE , TE , and TE . The horizontal axis is
the ratio of the ADI-MRTD time step to the CFL time step
limit of the original MRTD - .
It can be seen that, when time step increases to six times of CFL
of MRTD, the errors become bigger but are still relatively small,
less than 3%. In other words, the number of iteration in this
case can be saved by up to six times compared with the orig-
inal MRTD.

In the second case, a coarse mesh was chosen with the space
step being 30 mm. It led to a 3 2 5 grid. Fig. 2 shows the
computation results. As can be seen now, with a coarse mesh,

Fig. 2. Relative errors of the ADI-MRTD with the coarse mesh (�t -
is the CFL time step limit of the original MRTD).

the time step can no longer be too large. Even with the time step
of twice the CFL limit of the original MRTD, the error with the
ADI-MRTD becomes larger than 4.4%. Further studies show
that such increases in errors are mainly due to the larger nu-
merical dispersion errors because the absolute value of the time
step with the coarse mesh is larger than that with the dense
mesh. For instance, for the resonant frequency of
GHz, with the dense mesh and
with the coarse mesh when - is chosen. As
a result, we conclude that the time step with the unconditionally
stable ADI-MRTD is now mainly constrained by the modeling
accuracy.

V. CONCLUSION

In this paper, the unconditionally stable ADI-MRTD scheme
was developed. The CFL stability condition is completely re-
moved, and the time step is now only determined by the mod-
eling accuracy required. The ADI-MRTD scheme is particularly
useful with the variable mesh schemes where the time step can
be taken uniformly the same regardless of the mesh size in a nu-
merical grid.
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