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An Unconditionally Stable 3-D ADI-MRTD Method
Free of the CFL Stability Condition

Zhizhang ChenSenior Member, IEEEANd Jiazong Zhand/ember, IEEE

Abstract—in this paper, an alternating direction implicit (ADI)  successful until recently [7]-[9]. The ADI was applied to a
technique is applied to the recently developed multiresolution time- two-dimensional (2-D) TE-wave in [7]. A three-dimensional

domain (MRTD) method, resulting in an unconditionally stable (3-D) full-wave, unconditionally stable ADI-FDTD was shown

ADI-MRTD scheme free of the Courant—Friedich—Lecy (CFL) sta- . s ith ri f of diti | stabilit di
bility condition. The unconditional stability is theoretically proved, " [8], with rigorous proof of unconditional stability, and in

and preliminary numerical results are presented to validate the [9], With excellent numerical examples (in particular for the
scheme. Because the scheme is now free of the stability conditionJow-frequency computations). In this paper, further to our work
its time step is determined only by modeling accuracy. The price in [8], the ADI principle is applied to the MRTD, resulting in

for having the unconditional stability is, however, that the required an unconditionally stable 3-D ADI-MRTD algorithm
computation memory becomes almost twice of that for the original ’

MRTD.
Index Terms—Alternating direct implicit (ADI) technique and [I. UNCONDITIONALLY STABLE 3-D ADI-MRTD
unconditionally stability, FDTD, MRTD. FORMULATION

Similar to the development of the ADI-FDTD described in
. INTRODUCTION [8], the ADI-MRTD is derived by applying the ADI algorithm to

DTD is a powerful numerical method for solving electrothe original MRTD formulations. Since various forms of MRTD
F magnetic problems where field components are Comput@ggist due to the selections of different wavelet functions, various
in a time recursive fashion. An extensive review of thérms of ADI-MRTD can also be developed. In our case, the
state-of-the-art was presented in [1] and [2]. Nevertheleszs MRTD [3] is considered for simplicity as an illustration of the
FDTD is very computationally intensive due to its two inherefdDI-MRTD development. The field space is discretized with
physical constraints, one being the numerical dispersion aif@ Yee’s grid, and the field quantities are expanded in terms of
another being the numerical stability. To make the numericie wavelet expansions [3]. For instance, one can have
dispersion small, the spatial step of FDTD must be small,
normally smaller than one-tenth of wavelength. To make the

time-recursion stable, the time step must also be small, smaller Bl x— Em|;’;;71k
than the so-called Courant-Friedich—Lecy (CFL) stability M
condition. As a result, a large numerical mesh and a long _ At Z a(m)HZWTl/? §
simulation time may be required for solving electrically large eEAy L R
structures. At M
Many efforts have been made in relaxing or removing the - Z a(m)Hyw;lﬁm 1)
above two constraints in order to reduce the computational elz m=1—M -
expenditures. Among them are the multiresolution time-domain H |n+1/2 _H |r}f1/2
(MRTD) method applying wavelets expansions in space [3] N
and pseudospectral time-domain (PSTD) method applying At z_: o(m)E, [
fast Fourier transform (FFT) in space [4]. Both methods have  pAz = Yl d, ktm
claimed to achieve low numerical dispersion with numerical vt
grid resolutions as low as two points per wavelength. However, A Z (m)E.| )
the CFL stability condition for both methods still remains. pldy gt k

To relax or even remove the CFL conditions, implicit
methods may be incorporated in formulating the FDTD. One
of the implicit approaches is the alternating direction imp"Ctherea
(ADI) method that has been applied in heat transfer prObler\T/\]/%velet expansions [3].

[5]. An ADI-FDTD was attempted in 1980 [6] but was not When the ADI scheme is applied, the above equations are

broken up into two sub-stepsth step andn + (1/2))th step.
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the first-terms on the left-hand side. More specifically, (1) and At M ne1/2
(2) now become T AL ;M a(m)Hyl; 5 4 im
E : E. n—1/2 Atg M L—1 1
ik IZAJI,  EaArAy ST altm) Y dE I
At m=1—M I=—L
= H.". ‘
2€Ay rn:zl;]w a(m) ~|z,]+rn, k (7)
M .
At ne1/2 while for the second substep
- 2¢ Az Z CL( )Hy|i,j, k(—l—rn (3)
T m=1-M / AtQ M L—1 ;
n—1/2 n+1/2 n+1/2
H |z gk H |z 17/ E“/’|i,j,k - 4{5qu2 Z a(m) Z C(Z)EJJL‘,]’, k+l+m
At M—1 m—1—M I=—L
= c(m)E |? 7, k+m n At M n
NAZ 'rn;]w Yli, g, b+ = EJ} i,k =+ ZEAU Z CI/(7’T-14)IT[Z|Z j+m, k
At M—1 Y m=1-M
- Y dmELT @ At X
NAy m=—M - 2eAz rn:zlzjw ( )Hy|‘,1,k+m
for the first substep, and A#2 M -1
~ IpeAinz Z a(m) Z DE M j kme
E |n—|—1/2 E |n ) m—1—M I=—L
i, 5, k 50, (8)
-
- 2eAy Z UM HE jm, The advantages of solving (7) and (8) instead of (3) and (5)
m:l_j\\f lies in the fact that, in (7) and (8), the quantities to be updated
At Z a(m)H. |n—|—1/2 ) are of the same quantit¥;,. s, on the left-hand side of the equa-
2eAz Sy 7 Jy km tions. They are neighboring to each other along emgdimen-
n+1/2 S sion, thek direction (representing the spatial direction in the
H,|; i gk direction). By changing the subscript (5) or (6) each leads
A ML to a linear system of equations with a banded coefficient matrix
= Hali o+ > dmBY i kim whose width is determined by the order of MRTD applied. Such
g a banded matrix can be solved quickly for the MRTD time re-
A ML nt1/2 cursions with special mathematic subroutines.
_ @ Z C(m)EZ |i£j+rn, k (6)
m=-M [l. NUMERICAL STABILITY
for the second substep. The unconditional stability of the proposed ADI-MRTD can

By applying the same procedure to the MRTD equations f§€ proven in a way similar to that shown in [8]. By taking the
the other components, the complete formulations for the uncdhiscrete Fourier transform in the spatial domain along the three
ditionally stable ADI-MRTD scheme can be obtained. directions respectively, the ADI-MRTD in the spatial spectral

In comparisons of (4)—(6) for the ADI-MRTD with (1) anddomain at theath step can be written as
(2) for the original MRTD, it is not difficult to see that memory
required with the ADI-MRTD is double that of the original F" = MF* 9)
MRTD. This is because, in the ADI-MRTD, both electric
and magnetic field components are updated at each sub-stépereF’ = [E., E,, E., H,, H,, H.]" is the six field com-
while in the original MRTD, either electric or magnetic fieldPonents in the spectral domaitl is a6 x 6 matrix whose co-
components are updated at each sub-step as shown in (1) &ffigients are functions of space steps, time steps, medium con-
(2). stitutive parameters, and spatial frequencies inzthg, andz

The ADI-MRTD formulations can be further simplified asdirections respectively.
presented in [8] for the ADI-MRTD. For instance, after some For the proposed ADI-MRTD to be unconditionally stable,
tedious derivations, one can have following equationsdpr magnitudes of all the eigenvalues of matkikneed to be either
for the first substep unity or smaller. After some tedious derivations with the help of

MAPLES5.1, they are found to be
M L—-1

At? n
Eolin = 3o a2 > alm) 3o DB e, A=A =1
depny m=1-M I=—1, T+ 55
At X NI R
n— 1/2 n—1/2 ‘,'
=Bl tony 2a B Ns =y = L2I5 (10)

m=1—M - R
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Fig. 1. Relative errors of the ADI-MRTD with the dense medfi{;rrp-crr.
is the CFL time step limit of the original MRTD).

where

R= (e + W2) (e + W2) (e + W) 1)

G- 4pe (ung + uEWyQ + pueW? + VVWQVVy2 + I/VyQVV“2
B + W2W2) (pPe® + W2W2W2)
(12)
T =p3e® — pe (ung + LLEWyQ + LLEWZQ + VVWQVVy2
+ WW2 + W2W2) + W2IWZW?Z  (13)

M
At . (2m — Dk, A
W, = Ao ; a(m)sin <f) )
a=uzx,, 2. (14)
As shown in [8]
R?=68%4+17°. (15)
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Fig.2. Relative errors of the ADI-MRTD with the coarse medlt {irTp-crL
is the CFL time step limit of the original MRTD).

the time step can no longer be too large. Even with the time step
of twice the CFL limit of the original MRTD, the error with the
ADI-MRTD becomes larger than 4.4%. Further studies show
that such increases in errors are mainly due to the larger nu-
merical dispersion errors because the absolute value of the time
stepAt with the coarse mesh is larger than that with the dense
mesh. For instance, for the resonant frequency of 2.06
GHz, fAt = 0.0248 with the dense mesh anflAt = 0.149

with the coarse mesh whekt = 2Atyrrp-cFL IS chosen. As

a result, we conclude that the time step with the unconditionally
stable ADI-MRTD is now mainly constrained by the modeling
accuracy.

V. CONCLUSION

In this paper, the unconditionally stable ADI-MRTD scheme
was developed. The CFL stability condition is completely re-
moved, and the time step is now only determined by the mod-
eling accuracy required. The ADI-MRTD scheme is particularly
useful with the variable mesh schemes where the time step can

As aresult, magnitudes of all the eigenvalues, as representeghB¥aken uniformly the same regardless of the mesh size in a nu-
(10), are of unity. Therefore, the proposed ADI-MRTD schem@erical grid.

is unconditionally stable.

IV. NUMERICAL RESULTS

In order to validate the proposed ADI-MRTD, a cavity with
dimensions of 90 mnx 60 mmx 150 mm was computed. In the
first case, the mesh chosen was rather dense. The spatial steps[i)

all the three dimensions were chosen taXle= 5 mm, leading

toa 18x 12 x 30 grid. The time step was varied from one to six 4]
times of the CFL limit of the original S-MRTD [3]. Fig. 1 shows
the relative errors from the analytical solutions for the three res-

onant modes, Th1, TEig2, and TEg3. The horizontal axis is
the ratio of the ADI-MRTD time steg\¢ to the CFL time step
limit of the Original MRTD AtMRTD-CFL(:O~368 112(AZ/C))
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